トレハロース水溶液の蒸発過程の解析

<table>
<thead>
<tr>
<th>著者</th>
<th>石井 郁子 傘 孝之</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>日本歯科学会紀要 一般教育系</td>
</tr>
<tr>
<td>巻</td>
<td>ー</td>
</tr>
<tr>
<td>ベージ</td>
<td>ー</td>
</tr>
<tr>
<td>発行年</td>
<td>2014-03-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://doi.org/10.14983/00000681</td>
</tr>
</tbody>
</table>

Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja
The analysis of the evaporation process of α,α-trehalose aqueous solution

Ikuo ISHII
Department of Biochemistry, Kitasato University School of Medicine,
1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, JAPAN
and
Takayuki KARAKASA
Department of Chemistry, School of Life Dentistry at Tokyo
The Nippon Dental University,
Fujimi 1-9-20, Chiyoda-ku, Tokyo, 102-8159, JAPAN

(2014年2月12日受理)

Abstract

The evaporation process of α,α-trehalose aqueous solution were investigated by FT-IR ATR spectroscopy. We have demonstrated that the hydration number (= 8) and the dynamic hydration number (= 47) measured by the relationship of the antisymmetric stretching of the glycosidic bond and the concentration of the water in trehalose aqueous solution.

Key words : Trehalose, hydration, dynamic, FT-IR, ATR, evaporation
た隙間（クレフト）に水二分子が入った構造（II）（Fig. 2）に変化することでメタノールに溶解した後、クレフト中の水分子がメタノール中に放出されることにより、メタノールに難溶な無水トレハロースが析出するためと考えられる。

Fig. 1 α,α-trehalose (α-D-glucopyranosyl-(1,1)-α-D-glucopyranoside)(I)

Fig. 2 Ball-stick representation of α,α-trehalose in aqueous solution (II) and α,α-trehalose dihydrate (III) crystal

前報では、小液滴（10 μL）のトレハロース水溶液の自然乾燥によりアモルファストレハロース二水和物（ガラス状態）が形成されることを FT-IR スペクトルのインターバル測定と質量測定から明らかにした。

今回、トレハロース水溶液の乾燥過程でのモル比（水/トレハロース）の経時変化とその時のグリコシド結合の逆対称伸縮振動吸収ピークを FT-IR スペクトルから同時に測定し、このモル比とピーク位置との関係からトレハロースの水和構造について検討したので報告する。

実験

トレハロース二水和物は東京化成の特級試薬、グリセリンはナカライテスクの特級試薬、水は関東化学の HPLC 用蒸留水、重水はアクロスオーガニックの 99.95 atom % D を使用した。無水トレハロースは、トレハロース二水和物をメタノールで脱水して調製した 4)。トレハロース 2D2O は、無水トレハロースをグリセリン：重水 = 1：2.8 の溶液の存在下デシケーター中で室温下 24 時間放置することにより調製した。

IR スペクトル測定には、日本分光 FT/IR-4200 に、同じく日本分光製 1 回反射型 ATR-PRO450-S にダイヤモンドプリズムを取り付け、分解能 2 cm⁻¹、積算回数 128 回で測定した。IR スペクトルの処理は、スペクトルマネージャ（日本分光製）を用いた。

1. 標準トレハロース水溶液の調製と検量線の作成

トレハロース二水和物と水から 6 種類のモル比（水/トレハロース）の標準トレハロース水溶液を調製した（Table 1）。

<table>
<thead>
<tr>
<th>mmol trehalose</th>
<th>H₂O</th>
<th>Mol ratio (H₂O/trehalose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.865</td>
<td>116.969</td>
<td>62.7</td>
</tr>
<tr>
<td>2.006</td>
<td>117.095</td>
<td>58.4</td>
</tr>
<tr>
<td>2.246</td>
<td>116.098</td>
<td>51.7</td>
</tr>
<tr>
<td>2.450</td>
<td>116.267</td>
<td>47.5</td>
</tr>
<tr>
<td>2.789</td>
<td>117.666</td>
<td>42.2</td>
</tr>
<tr>
<td>3.184</td>
<td>118.285</td>
<td>37.1</td>
</tr>
</tbody>
</table>

作成した 6 種類のモル比の標準トレハロース水溶液とトレハロース二水和物、無水トレハロースの FT-IR スペクトルを ATR 法で測定した。得られたスペクトルはデコンボリューション（半値幅 180）処理後ペースライン補正（直線）を行い、O-H 吸収帯（P1）と C-H 吸収帯（P2）の面積比を算出した（Table 2）。この面積比（P1/P2）とモル比（水/トレハロース）の間には y = 0.7816 x - 6.9668 の回帰式が成立した（Fig. 3）。
2. 標準トレハロース重水溶液の調製と検量線の作成

トレハロース二水和物と重水から6種類のモル比（重水／トレハロース）の標準トレハロース重水溶液を調製した（Table 3）。

作成した6種類のモル比の標準トレハロース重水溶液とトレハロース2D.O、無水トレハロースのFT-IRスペクトルをATR法で測定した。得られたスペクトルはデコンポリューション（半値幅180）処理後ベースライン補正（直線）を行い、O-D吸収帯（P1）とC-H吸収帯（P2）の面積比を算出した（Table 4）。この面積比（P1/P2）とモル比（重水／トレハロース）の間には

\[y = 0.7816x - 6.9668 \]

\[R^2 = 0.9976 \]

が成立した（Fig. 4）。

\[y = 1.087x \]

\[R^2 = 0.9943 \]

Fig. 4
FT-IRインターバル測定

3. テレハロース水溶液の蒸発とその後の重水雰囲気下での変化

モル比（水／トレハロース）62.7 のトレハロース水溶液をダイヤモンドプリズム上に 5 μL 置き、シリカゲル乾燥下、室温 10 分間隔で 3 時間インターバル測定を行った。各経過時間でのモル比（水／トレハロース）は、スペクトルをデコンボリューション（半値幅 180）処理後ベースライン補正（直線）を行い、O-H 吸収帯（P1）と C-H 吸収帯（P2）の面積比（x）から y = 0.7816 x - 6.9668 により求めた（Table 5）。

Table 5

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Range(cm⁻¹)</th>
<th>Area</th>
<th>Ratio (P1/P2)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P1 2985 3692</td>
<td>116.7</td>
<td>81.7</td>
<td>56.9</td>
</tr>
<tr>
<td></td>
<td>P2 2981 2985</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P1 2985 3693</td>
<td>118.47</td>
<td>37.3</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>P2 2887 2985</td>
<td>3.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>P1 2985 3692</td>
<td>120.56</td>
<td>24.4</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>P2 2885 2985</td>
<td>4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>P1 2985 3691</td>
<td>120.11</td>
<td>21.2</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>P2 2882 2985</td>
<td>5.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>P1 2984 3691</td>
<td>121.56</td>
<td>19.5</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>P2 2881 2984</td>
<td>6.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>P1 2986 3690</td>
<td>121.08</td>
<td>18.1</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>P2 2881 2986</td>
<td>6.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>P1 2985 3692</td>
<td>122.64</td>
<td>17.7</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>P2 2880 2985</td>
<td>6.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>P1 2985 3692</td>
<td>122.19</td>
<td>17.4</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>P2 2880 2985</td>
<td>7.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>P1 2985 3692</td>
<td>123.18</td>
<td>16.9</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>P2 2877 2985</td>
<td>7.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>P1 2983 3692</td>
<td>123.36</td>
<td>16.2</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>P2 2874 2983</td>
<td>7.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>P1 2983 3691</td>
<td>123.54</td>
<td>16.1</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>P2 2875 2983</td>
<td>7.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>P1 2984 3692</td>
<td>123.72</td>
<td>16.1</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>P2 2877 2984</td>
<td>7.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>P1 2982 3692</td>
<td>124.33</td>
<td>16.0</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>P2 2878 2982</td>
<td>7.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>P1 2982 3692</td>
<td>124.18</td>
<td>15.6</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>P2 2873 2982</td>
<td>7.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>P1 2983 3690</td>
<td>123.81</td>
<td>15.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>P2 2873 2983</td>
<td>8.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>P1 2983 3690</td>
<td>124.86</td>
<td>15.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>P2 2874 2983</td>
<td>8.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>P1 2983 3689</td>
<td>124.73</td>
<td>15.2</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>P2 2874 2983</td>
<td>8.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>P1 2982 3690</td>
<td>125.28</td>
<td>15.0</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>P2 2869 2982</td>
<td>8.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>P1 2983 3689</td>
<td>125.04</td>
<td>15.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>P2 2874 2983</td>
<td>8.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

次に 3 時間インターバル測定を行った試料とグリセリンと重水のモル比（グリセリン：重水 = 1：2.8）の溶液 50 μL 入れた容器を共に容量 4.3 mL の蓋で密閉し、室温下 80 分間隔で 4 時間インターバル測定を行った。各時間の（水／トレハロース）のモル比は、スペクトルをデコンボリューション（半値幅 180）処理後ベースライン補正（直線）を行い、O-H 吸収帯（P1）と C-H 吸収帯（P2）の面積比（x）から y = 0.7816 x - 6.9668 により求めた（Table 6）。

Table 6

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Range(cm⁻¹)</th>
<th>Area</th>
<th>Ratio (P1/P2)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P1 2983 3697</td>
<td>126.38</td>
<td>15.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>P2 2874 2983</td>
<td>8.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>P1 2982 3697</td>
<td>126.12</td>
<td>15.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>P2 2877 2982</td>
<td>8.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>P1 2983 3697</td>
<td>126.47</td>
<td>14.2</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>P2 2871 2983</td>
<td>8.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>P1 2983 3697</td>
<td>113.46</td>
<td>11.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>P2 2832 2985</td>
<td>10.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Range(cm⁻¹)</th>
<th>Area</th>
<th>Ratio (P1/P2)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P1 2259 2619</td>
<td>2.39</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>P2 2875 2983</td>
<td>8.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>P1 2259 2623</td>
<td>3.34</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>P2 2877 2983</td>
<td>8.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>P1 2274 2630</td>
<td>10.55</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>P2 2871 2982</td>
<td>8.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>P1 2265 2635</td>
<td>15.77</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>P2 2831 2985</td>
<td>10.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. テレハロース重水溶液の蒸発

モル比（重水／トレハロース）64.4 のトレハロース重水溶液をダイヤモンドプリズム上に 5 μL 置き、シリカゲル乾燥下、室温 10 分間隔で 3 時間インターバル測定を行った。各経過時間でのモル比（重水／トレハロース）は、スペクトルをデコンボリューション（半値幅 180）処理後ベースライン補正（直線）を行い、O-D 吸収帯（P1）と C-H 吸収帯（P2）の面積比（x）から y = 1.087 x により求めめた（Table 8）。

Table 8

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Range(cm⁻¹)</th>
<th>Area</th>
<th>Ratio (P1/P2)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P1 2259 2619</td>
<td>2.39</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>P2 2875 2983</td>
<td>8.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>P1 2259 2623</td>
<td>3.34</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>P2 2877 2983</td>
<td>8.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>P1 2274 2630</td>
<td>10.55</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>P2 2871 2982</td>
<td>8.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>P1 2265 2635</td>
<td>15.77</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>P2 2831 2985</td>
<td>10.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
結果と考察

前報5)で、トレハロース水溶液を自然蒸発させると 992 cm⁻¹ に現れるグリコシド結合の逆対称伸縮振動の吸収が低波数シフトすることを報告した。今回、この低波数シフトがトレハロースの水和と密接に関係しているのではないかと考えた。そこで、まずトレハロースの濃度[モル比(水/トレハロース)]とグリコシド結合の逆対称伸縮振動の吸収ピークの同時測定を行った。

Table 8

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Range(cm⁻¹)</th>
<th>Area (P1/P2)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P1 2168</td>
<td>2735</td>
<td>84.71</td>
</tr>
<tr>
<td>P2 2848</td>
<td>2992</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P1 2175</td>
<td>2733</td>
<td>33.83</td>
</tr>
<tr>
<td>P2 2848</td>
<td>2990</td>
<td>2.99</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>P1 2182</td>
<td>2727</td>
<td>61.52</td>
</tr>
<tr>
<td>P2 2847</td>
<td>2990</td>
<td>5.01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>P1 2178</td>
<td>2723</td>
<td>57.51</td>
</tr>
<tr>
<td>P2 2847</td>
<td>2987</td>
<td>5.97</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>P1 2162</td>
<td>2723</td>
<td>57.37</td>
</tr>
<tr>
<td>P2 2843</td>
<td>2986</td>
<td>6.73</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>P1 2180</td>
<td>2724</td>
<td>55.09</td>
</tr>
<tr>
<td>P2 2841</td>
<td>2985</td>
<td>7.18</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>P1 2172</td>
<td>2720</td>
<td>53.99</td>
</tr>
<tr>
<td>P2 2846</td>
<td>2988</td>
<td>7.44</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>P1 2176</td>
<td>2720</td>
<td>54.07</td>
</tr>
<tr>
<td>P2 2841</td>
<td>2988</td>
<td>7.71</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>P1 2176</td>
<td>2723</td>
<td>54.60</td>
</tr>
<tr>
<td>P2 2847</td>
<td>2985</td>
<td>7.85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>P1 2172</td>
<td>2720</td>
<td>53.73</td>
</tr>
<tr>
<td>P2 2844</td>
<td>2985</td>
<td>8.02</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>P1 2172</td>
<td>2718</td>
<td>51.84</td>
</tr>
<tr>
<td>P2 2842</td>
<td>2986</td>
<td>8.21</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>P1 2174</td>
<td>2722</td>
<td>53.17</td>
</tr>
<tr>
<td>P2 2842</td>
<td>2985</td>
<td>8.24</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>P1 2168</td>
<td>2719</td>
<td>53.64</td>
</tr>
<tr>
<td>P2 2842</td>
<td>2985</td>
<td>8.32</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>P1 2173</td>
<td>2721</td>
<td>53.85</td>
</tr>
<tr>
<td>P2 2848</td>
<td>2986</td>
<td>8.25</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>P1 2167</td>
<td>2718</td>
<td>53.62</td>
</tr>
<tr>
<td>P2 2842</td>
<td>2986</td>
<td>8.39</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>P1 2172</td>
<td>2718</td>
<td>51.78</td>
</tr>
<tr>
<td>P2 2844</td>
<td>2986</td>
<td>8.59</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>P1 2165</td>
<td>2718</td>
<td>52.48</td>
</tr>
<tr>
<td>P2 2842</td>
<td>2986</td>
<td>8.54</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>P1 2170</td>
<td>2718</td>
<td>51.60</td>
</tr>
<tr>
<td>P2 2846</td>
<td>2986</td>
<td>8.66</td>
<td></td>
</tr>
</tbody>
</table>

Table 9

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Antisymmetric stretching of the glycosidic bond (cm⁻¹)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>992</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>989</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>987</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>986</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>985</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>985</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>985</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td>985</td>
<td>7</td>
</tr>
<tr>
<td>80</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>120</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>130</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>140</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>160</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>170</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>180</td>
<td>984</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 10

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Antisymmetric stretching of the glycosidic bond (cm⁻¹)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>992</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>989</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>987</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>986</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>985</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>985</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>985</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td>985</td>
<td>7</td>
</tr>
<tr>
<td>80</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>984</td>
<td>6</td>
</tr>
<tr>
<td>120</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>130</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>140</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>160</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>170</td>
<td>984</td>
<td>5</td>
</tr>
<tr>
<td>180</td>
<td>984</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 5

The figures denote the mol ratio. He, 50 分～180 分の130 分間に水分子が、7個から5個へと2個減少している間に、グリコシド結合の逆対称伸縮振動の吸収は1 cm⁻¹低波数シフトしている。次に、モル比（水／トレハロース）と逆対称伸縮振動の吸収位置との関係を Table 10とFig. 6に示した。
Table 10

<table>
<thead>
<tr>
<th>mol ratio (H₂O/trehalose)</th>
<th>cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>992</td>
</tr>
<tr>
<td>58</td>
<td>992</td>
</tr>
<tr>
<td>57</td>
<td>992</td>
</tr>
<tr>
<td>52</td>
<td>992</td>
</tr>
<tr>
<td>47</td>
<td>992</td>
</tr>
<tr>
<td>42</td>
<td>991</td>
</tr>
<tr>
<td>37</td>
<td>991</td>
</tr>
<tr>
<td>32</td>
<td>989</td>
</tr>
<tr>
<td>22</td>
<td>987</td>
</tr>
<tr>
<td>12</td>
<td>986</td>
</tr>
<tr>
<td>10</td>
<td>985</td>
</tr>
<tr>
<td>8</td>
<td>985</td>
</tr>
<tr>
<td>7</td>
<td>985</td>
</tr>
<tr>
<td>6</td>
<td>984</td>
</tr>
<tr>
<td>5</td>
<td>984</td>
</tr>
</tbody>
</table>

Fig. 6

Fig. 6 から、グリコシド結合の低波数シフトがモル比（水／トレハロース）の変化に対応して、モル比（水／トレハロース）が 8 から 5 の変化に対して、グリコシド結合の逆対称伸縮振動の低波数シフトは、1 cm⁻¹であることがわかる。これは、トレハロース分子を拘束していた水分子が消失したことから示している。そして、残りの水分子は、トレハロース分子を強く拘束しない水和分子であり、モル比（水／トレハロース）がトレハロース分子の水和数であると考えられる。この値は、文献記載のトレハロースの水和数と良い一致を示している。

そこで、この状態の水和水が結晶水のように構造中に束縛されている水分子なのか、あるいは、水溶液中の様に自由に動き回っている水分子なのかを知るために、この 3 時間蒸発させたトレハロース水溶液を水換算で相対湿度約 70 %となるモル比（グリセリン:重水 = 1:2.8）のグリセリン重水混合溶液存在下に置き、引き続き、室温下 80 分間で 3 時間インターバル測定をした。このときのスペクトルを Fig. 7 に示した。Fig. 7 に示されたように 0 分（黒線）、80 分（緑線）、160 分（青線）、240 分（赤線）と時間が経過すると 2500 cm⁻¹付近の水の吸収強度が増加しているのが分かる。

Table 9 から 40 分～180 分の 140 分間では、モル比（水／トレハロース）が 8 から 5 の変化に対して、グリコシド結合の逆対称伸縮振動の低波数シフトは、1 cm⁻¹であることがわかる。これは、トレハロース分子を拘束していた水分子が消失したことから示している。そして、残りの水分子は、トレハロース分子を強く拘束しない水和分子であり、モル比（水／トレハロース）がトレハロース分子の水和数であると考えられる。この値は、文献記載のトレハロースの水和数と良い一致を示している。

また、Table 6 と Table 7 から、180 分までは水と重水の総和は 5.4 と一定であるが、時間の経過と共にトレハロースに対する水の量は減少し、反対に重水の量は増加している。そして、240 分では水と重水の総和が 3.4 と減少しているなかで、トレハロースに対する水の量は減少し、反対に重水の量は増加している。これは、蒸発した水の代わりに重水が入っていくのではなく水分子と重水分
子の交換が行われていることを示している。従って、トレハロースに含まれる水分子が、結晶水としての水分子に近い性質を有しているためであると推定できる。

次に、トレハロース重水溶液についての水和構造を検討した。モル比（重水/トレハロース）64.4のトレハロース重水溶液をシリカゲル乾燥下、室温10分間隔で3時間間隔で3時間インターバル測定を行った時のモル比（重水/トレハロース）とグリコシド結合の逆対称伸縮振動の吸収位置の変化をFT-IR ATR法で測定し、その結果をTable 11とFig. 8に示した。Table 11のデータでは、0分から30分間の間にトレハロース1分子あたりの水分子が57個から10個に急激に失われているのに対して、30分～180分の150分間に5個しか変化していない。同時に、0分から30分の間では、グリコシド結合の逆対称伸縮振動の吸収は4 cm⁻¹低波数シフトしているのに対して、30分から180分の150分間では、2 cm⁻¹低波数シフトしている。次に、トレハロース水溶液の場合と同様に、モル比（重水/トレハロース）と逆対称伸縮振動の吸収位置と動的水和数の関係をTable 12とFig. 9に示した。

このTable 12とFig. 9から、動的水和数が38、水和数は8であることがわかった。以上、トレハロースの動的水和数と水和数は、トレハロース水溶液の蒸発過程をトレハロース：水のモル比と逆対称伸縮振動（グリコシド結合）の吸収位置のシフト値の関係から測定できることが分かった。また重水の場合も同様の測定から動的水和数と水和数を測定できることを認めた。

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Antisymmetric stretching of the glycosidic bond (cm⁻¹)</th>
<th>mol ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>979</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>977</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>975</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>975</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>974</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>974</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>974</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td>974</td>
<td>7</td>
</tr>
<tr>
<td>80</td>
<td>973</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>974</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>974</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>973</td>
<td>6</td>
</tr>
<tr>
<td>120</td>
<td>974</td>
<td>5</td>
</tr>
<tr>
<td>130</td>
<td>974</td>
<td>5</td>
</tr>
<tr>
<td>140</td>
<td>974</td>
<td>5</td>
</tr>
<tr>
<td>150</td>
<td>973</td>
<td>5</td>
</tr>
<tr>
<td>160</td>
<td>973</td>
<td>5</td>
</tr>
<tr>
<td>170</td>
<td>973</td>
<td>5</td>
</tr>
<tr>
<td>180</td>
<td>973</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mol ratio (D₂O/trehalose)</th>
<th>cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>982</td>
</tr>
<tr>
<td>60</td>
<td>980</td>
</tr>
<tr>
<td>57</td>
<td>979</td>
</tr>
<tr>
<td>55</td>
<td>981</td>
</tr>
<tr>
<td>49</td>
<td>980</td>
</tr>
<tr>
<td>44</td>
<td>980</td>
</tr>
<tr>
<td>38</td>
<td>980</td>
</tr>
<tr>
<td>22</td>
<td>977</td>
</tr>
<tr>
<td>12</td>
<td>975</td>
</tr>
<tr>
<td>10</td>
<td>975</td>
</tr>
<tr>
<td>8</td>
<td>974</td>
</tr>
<tr>
<td>7</td>
<td>974</td>
</tr>
<tr>
<td>6</td>
<td>974</td>
</tr>
<tr>
<td>5</td>
<td>973</td>
</tr>
</tbody>
</table>
文献

1. 第1回～第12回トレハロースシンポジウム記録集
2. 石井郁子, 傘孝之, 日本歯科大学紀要, 36, 33-37 (2007)
3. 石井郁子, 傘孝之, 日本歯科大学紀要, 38, 39-43 (2009)
4. 石井郁子, 傘孝之, 日本歯科大学紀要, 42, 11-16 (2013)
6. 櫻井実, トレハロースシンポジウム記録集, 1, 31-43 (1997); 櫻井実, トレハロースシンポジウム記録集, 15, 1-10 (2011)に記載されている値; 労的水和数(N_H2O) 48.3, 水和数; 粘度測定 8.0, DSC(示差走査熱量)測定 8.0, QENS(中性子準弾性散乱)測定 9.0